Karnataka SSLC Maths Model Question Paper 2 Kannada Medium

Karnataka SSLC Maths Model Question Paper 2 Kannada Medium

Karnataka SSLC Maths Model Question Paper 2 Kannada Medium

ವಿಷಯ : ಗಣಿತ
ಸಮಯ: 3 ಗಂಟೆಗಳು
ಗರಿಷ್ಠ ಅಂಕಗಳು: 80

I. ಕೆಳಗಿನ ಪ್ರಶ್ನೆಗಳಿಗೆ ಅಥವಾ ಅಪೂರ್ಣ ಹೇಳಿಕೆಗೆ ನಾಲ್ಕು ಪರ್ಯಾಯ ಉತ್ತರಗಳನ್ನು ನೀಡಲಾಗಿದೆ. ಇವುಗಳಲ್ಲಿ ಸೂಕ್ತವಾದ ಉತ್ತರವನ್ನು ಆರಿಸಿ, ಕ್ರಮಾಕ್ಷರದೊಡನೆ ಪೂರ್ಣ ಉತ್ತರವನ್ನು ಬರೆಯಿರಿ. (8 × 1 = 8)

Question 1.
ಚಿತ್ರದಲ್ಲಿ QE = 7.2 cm, PF = 1.8 cm, FR = 5.4cm ಆದರೆ PE ಯು
Karnataka SSLC Maths Model Question Paper 2 Q1
(A) 2 cm
(B) 2.4 cm
(C) 2.8 cm
(D) 3.2 cm

a

Question 2.
‘r’ ವೃತ್ತ ತ್ರಿಜ್ಯ ಹಾಗೂ 60° ಕೋನವನ್ನು ಹೊಂದಿರುವ ತ್ರಿಜ್ಯಾಂತರ ಖಂಡದ ವಿಸ್ತೀರ್ಣ
Karnataka SSLC Maths Model Question Paper 2 Q2

Question 3.
P (-2, -1), ರಲ್ಲಿ ಲಂಬದೂರವು
(A) -2
(B) -1
(C) 1
(D) 2

Question 4.
‘0’ ಮೂಲಬಿಂದು ಮತ್ತು P (4, 3) ರ ನಡುವಿನ ದೂರ (ಏಕಮಾನಗಳಲ್ಲಿ) OP = …….
(A) 5
(B) 4
(C) 3
(D) 2

Question 5.
P (x) = 5x – 10 ರ ಶೂನ್ಯತೆ.
(A) 2
(B) -2
(C) 5
(D) -5

Question 6.
x + \(\frac { 2 }{ x }\) = 3 ಸಮೀಕರಣದ ಆದರ್ಶರೂಪ
(A) x2 + 2x – 3 = 0
(B) x2 + 3x + 2 = 0
(C) x2 – 3x + 2 = 0
(D) x2 – 2x + 3 = 0

Question 7.
ಎರಡು ನಾಣ್ಯಗಳನ್ನು ಏಕಕಾಲಕ್ಕೆ ಚಿಮ್ಮಿದಾದ, ಶಿರ H ಮತ್ತು ಪ್ರಚ್ಛ T ಇರುವಂತೆ ಸಾಧ್ಯ ಫಲಿತಗಳು
(A) {T, H, H, T}
(B) {TT, HH, HT, TH}
(C) {T, H}
(D) {TT, HH}

Question 8.
ಸಿಲಿಂಡರ್‌ನ ಎತ್ತರ ‘h’ ಮತ್ತು ಪಾದದ ತ್ರಿಜ್ಯ ‘r’ ಆದಾಗ ಸಿಲಿಂಡರ್‌ನ ಪಾರ್ಶ್ವ ಮೇಲೈ ವಿಸ್ತೀರ್ಣ
(A) 2π (r + h)
(B) 2πr (r + h)
(C) 2πrh
(D) \(\frac { 2\pi r }{ h }\)

II. ಈ ಕೆಳಗಿನ ಪ್ರಶ್ನೆಗಳಿಗೆ ಉತ್ತರಿಸಿ: (6 × 1 = 6)

Question 9.
ಒಂದು 5m ಎತ್ತರದ ಏಣಿಯನ್ನು ನೆಲದ ಮೇಲಿನಿಂದ 4 m ಎತ್ತರದ ಕಿಟಕಿಯನ್ನು ತಲುಪುವಂತೆ ಗೋಡೆಗೆ ಒರಗಿಸಿದೆ. ಗೋಡೆಯ ಪಾದದಿಂದ ಏಣಿಯ ಪಾದಕ್ಕಿರುವ ದೂರ ಲೆಕ್ಕಿಸಿ.

Question 10.
ಒಂದು ಬಿಂದುವಿನಿಂದ ವೃತ್ತದ ಮೇಲಿನ ಬಿಂದುವಿಗೆ ಎಳೆದ ಸ್ಪರ್ಶಕಗಳ ಸಂಖ್ಯೆ ಎಷ್ಟು?

Question 11.
‘ಭಾಗ ಪ್ರಮಾಣ ಸೂತ್ರ’ ವನ್ನು ಬರೆಯಿರಿ.

Question 12.
ಯೂಕ್ಲಿಡ್‌ನ ಭಾಗಾಕಾರ ಅನುಪ್ರವೇಯವನ್ನು ತಿಳಿಸಿ.

Question 13.
ಘನಪದೋಕ್ತಿಯು ಹೊಂದಿರಬಹುದಾದ ಗರಿಷ್ಟ ಶೂನ್ಯತೆಗಳ ಸಂಖ್ಯೆ ಎಷ್ಟು?

Question 14.
ಎರಡು ಸಂಖ್ಯೆಗಳ ಮೊತ್ತ 27 ಮತ್ತು ಗುಣಲಬ್ಧ 182 ಆದರೆ ಆ ಸಂಖ್ಯೆಗಳು ಯಾವುವು?

III. ಈ ಕೆಳಗಿನ ಪ್ರಶ್ನೆಗಳಿಗೆ ಉತ್ತರಿಸಿ: (16 × 2 = 32)

Question 15.
ಮೊತ್ತ ಕಂಡುಹಿಡಿಯಿರಿ: 34 + 32 + 30 + …………… + 10,

Question 16.
ಒಂದು ಏಣಿಯ ಪಾದವು ನೆಲದ ಮೇಲೆ ಗೋಡೆಯಿಂದ 2.5m ದೂರದಲ್ಲಿ ಹಾಗೂ ಅದರ ತುದಿಯು ನೆಲದ ಮೇಲಿಂದ 6 m ಎತ್ತರದಲ್ಲಿರುವ ಕಿಟಕಿಯನ್ನು ಮುಟ್ಟುವಂತೆ ಏಣಿಯನ್ನು ಗೋಡೆಗೆ ಒರಗಿಸಿ ಇಡಲಾಗಿದೆ. ಏಣಿಯ ಉದ್ದವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

Question 17.
ಒಂದು ಎರವಲು ಗ್ರಂಥಾಲಯದಲ್ಲಿ ಮೊದಲ 3 ದಿನಕ್ಕೆ ಒಂದು ನಿಗದಿತ ಶುಲ್ಕವಿರುತ್ತದೆ. ಆ ದಿನದ ಪ್ರತಿಯೊಂದೂ ದಿನಕ್ಕೂ ಒಂದು ಹೆಚ್ಚುವರಿ ಶುಲ್ಕವಿರುತ್ತದೆ. ಪುಸ್ತಕವನ್ನು 7 ದಿನ ತನ್ನಲ್ಲಿ ಇರಿಸಿಕೊಂಡಿದ್ದಕ್ಕಾಗಿ ಸರಿತಾ ₹ 27 ನ್ನು ಪಾವತಿಸಿದರೆ, ಪುಸ್ತಕವನ್ನು 5 ದಿನ ಇರಿಸಿಕೊಂಡಿದ್ದಕ್ಕಾಗಿ ಸೂಸಿ ₹ 21 ನ್ನು ಪಾವತಿಸಿದಳು. ನಿಗದಿತ ಶುಲ್ಕ ಮತ್ತು ಪ್ರತಿಯೊಂದು ಹೆಚ್ಚುವರಿ ದಿನದ ಶುಲ್ಕವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

Question 18.
ನೀರಿನ ಒಳಭಾಗದಲ್ಲಿರುವ ಬಂಡೆಗಳ ಬಗ್ಗೆ ಎಚ್ಚರಿಸಲು ಒಂದು ದೀಪಸ್ಥಂಭವು 80° ಕೋನವಿರುವ ತ್ರಿಜ್ಯಾಂತರ ಖಂಡದಲ್ಲಿ 16.5 km ದೂರಕ್ಕೆ ಕೆಂಪು ಬೆಳಕನ್ನು ಹರಡುತ್ತದೆ. ಹಡಗುಗಳನ್ನು ಎಚ್ಚರಿಸುವ ಈ ಭಾಗದ ವಿಸ್ತೀರ್ಣವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಅಥವಾ
ಚಿತ್ರದಲ್ಲಿ ತೋರಿಸಿರುವಂತೆ 4 cm ಬಾಹುವುಳ್ಳ ಒಂದು ಚೌಕದ ಪ್ರತೀ ಮೂಲೆಯಲ್ಲಿ 1 cm ತ್ರಿಜ್ಯವಿರುವ ವೃತ್ತ ಚತುರ್ಥಕವನ್ನು ಮತ್ತು 2 cm ವ್ಯಾಸವಿರುವ ಒಂದು ವೃತ್ತವನ್ನು ಕತ್ತರಿಸಿದೆ. ಚೌಕದ ಉಳಿದ ಭಾಗದ ವಿಸ್ತೀರ್ಣವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
Karnataka SSLC Maths Model Question Paper 2 Q18

Question 19.
ಪಾದ 8 cm ಮತ್ತು ಎತ್ತರ 4 cm ಇರುವ ಒಂದು ಸಮದ್ವಿಬಾಹು ತ್ರಿಭುಜವನ್ನು ರಚಿಸಿ, ನಂತರ ಮತ್ತೊಂದು ತ್ರಿಭುಜವನ್ನು, ಅದರ ಬಾಹುಗಳು ಮೊದಲು ರಚಿಸಿದ ಸಮದ್ವಿಬಾಹು ತ್ರಿಭುಜದ ಅನುರೂಪ ಬಾಹುಗಳ 1\(\frac { 1 }{ 2 }\) ರಷ್ಟಿರುವಂತೆ ರಚಿಸಿ,

Question 20.
(4, -3) ಮತ್ತು (8, 5) ಬಿಂದುಗಳನ್ನು ಸೇರಿಸುವ ರೇಖಾಖಂಡವನ್ನು ಆಂತರಿಕವಾಗಿ 3 : 1 ಅನುಪಾತದಲ್ಲಿ ವಿಭಾಗಿಸುವ ಬಿಂದುವಿನ ನಿರ್ದೇಶಾಂಕಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

Question 21.
ಶೃಂಗಗಳು ಈ ಕೆಳಗಿನಂತಿರುವ ತ್ರಿಭುಜಗಳ ವಿಸ್ತೀರ್ಣಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ. (5, -1), (3, -5), (5, 2)

Question 22.
√5 ಒಂದು ಅಭಾಗಲಬ್ಧ ಸಂಖ್ಯೆ ಎಂದು ಸಾಧಿಸಿ.

Question 23.
(1, 1) ನ್ನು ಕ್ರಮವಾಗಿ ಶೂನ್ಯತೆಗಳ ಮೊತ್ತ ಹಾಗೂ ಗುಣಲಬ್ದವಾಗಿ ಹೊಂದಿರುವ ವರ್ಗಬಹುಪದೋಕ್ತಿಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

Question 24.
ಮೂಲಗಳ ಸ್ವಭಾವವನ್ನು ವಿವೇಚಿಸಿ, ವಾಸ್ತವ ಮೂಲಗಳಿದ್ದಲ್ಲಿ, ಅವುಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ: 2x2 – 3x + 5 = 0

Question 25.
1.6m ಎತ್ತರದ ಪ್ರತಿಮೆಯೊಂದನ್ನು ಒಂದು ಪೀಠದ ಮೇಲ್ಬಾಗದಲ್ಲಿ ಇರಿಸಲಾಗಿದೆ. ನೆಲದ ಮೇಲಿನ ಒಂದು ಬಿಂದುವಿನಿಂದ ಪ್ರತಿಮೆಯ ಮೇಲಿನ ಉನ್ನತ ಕೋನವು 60° ಮತ್ತು ಅದೇ ಬಿಂದುವಿನಿಂದ ಪೀಠದ ಮೇಲ್ತುದಿಯ ಉನ್ನತ ಕೋನವು 45° ಇದ್ದರೆ, ಪೀಠದ ಎತ್ತರವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

Question 26.
10 ಪಂದ್ಯಗಳಲ್ಲಿ ಒಬ್ಬ ಬೌಲರ್‌ನು ಪಡೆದ ವಿಕೆಟ್‌ಗಳ ಸಂಖ್ಯೆಯು ಈ ಕೆಳಗಿನಂತಿದೆ.
Karnataka SSLC Maths Model Question Paper 2 Q20

Question 27.
ಒಂದು ದಾಳವನ್ನು ಒಂದು ಸಲ ಎಸೆಯಲಾಗಿದೆ. 2 ಮತ್ತು 6ರ ನಡುವೆ ಒಂದು ಸಂಖ್ಯೆಯನ್ನು ಪಡೆಯುವ ಸಂಭವನೀಯತೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

Question 28.
ಒಂದು ಪಾತ್ರೆಯ ಆಕಾರವು ಟೊಳ್ಳಾದ ಸಿಲಿಂಡರಿನ ಒಂದು ಪಾದದ ಮೇಲೆ ಟೊಳ್ಳಾದ ಅರ್ಧಗೋಳಾಕೃತಿಯನ್ನು ಕೂಡಿಸಿ ಮಾಡಿದೆ. ಅರ್ಧಗೋಳದ ವ್ಯಾಸವು 14 cm ಮತ್ತು ಪಾತ್ರೆಯ ಒಟ್ಟು ಎತ್ತರ 13 cm ಇದೆ. ಈ ಪಾತ್ರೆಯ ಒಳಮೇ ವಿಸ್ತೀರ್ಣವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಅಥವಾ
ಒಂದು ಘನ ಸಿಲಿಂಡರಿನ ಎತ್ತರ 2.4 m ಮತ್ತು ವ್ಯಾಸ 1.4 m ಇದೆ. ಇದರಿಂದ ಒಂದೇ ಎತ್ತರ ಮತ್ತು ಒಂದೇ ವ್ಯಾಸವನ್ನು ಹೊಂದಿರುವ ಶಂಕುವಿನಾಕಾರದ ಹಳ್ಳವನ್ನು ಕೊರೆದು ಟೊಳ್ಳಾಗಿಸಿದೆ. ನೂತನ ಘನದ ಒಟ್ಟು ಮೇಲೈ ವಿಸ್ತೀರ್ಣವನ್ನು ಅತ್ಯಂತ ಸಮೀಪದ ಬೆಲೆಗೆ cm2 ನಲ್ಲಿ ಕಂಡುಹಿಡಿಯಿರಿ.

Question 29.
\(\frac { 3 }{ 2 }\) x + \(\frac { 5 }{ 3 }\) y = 7: 9x – 10y = 14 ಈ ರೇಖಾತ್ಮಕ ಸಮೀಕರಣಗಳಲ್ಲಿ \(\frac { { a }_{ 1 } }{ { a }_{ 2 } }\), \(\frac { { b }_{ 1 } }{ { b }_{ 2 } }\) ಮತ್ತು \(\frac { { c }_{ 1 } }{ { c }_{ 2 } }\) ಅನುಪಾತಗಳನ್ನು ಹೋಲಿಸುವ ಮೂಲಕ ಜೋಡಿಗಳು ಸ್ಥಿರವಾಗಿವೆಯೇ ಅಥವಾ ಅಸ್ಥಿರವಾಗಿವೆಯೇ ಎಂಬುದನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

Question 30.
150 cm ಎತ್ತರವಿರುವ ಒಬ್ಬ ವ್ಯಕ್ತಿಯು ತನ್ನ ನೆರಳಿನ ತುದಿಯನ್ನು ಗಮನಿಸಿದಾಗ ಅದು ಅವನ ಪಾದದಿಂದ 150√3 cm ದೂರದಲ್ಲಿರುವುದು ಕಂಡುಬರುತ್ತದೆ. ಹಾಗಾದರೆ ಅವನ ನೋಟದಲ್ಲಿ ಉಂಟಾದ ಅವನತ ಕೋನವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

IV. ಈ ಕೆಳಗಿನ ಪ್ರಶ್ನೆಗಳಿಗೆ ಉತ್ತರಿಸಿ: (6 × 3 = 18)

Question 31.
‘ವೃತ್ತದ ಮೇಲಿನ ಯಾವುದೇ ಬಿಂದುವಿನಲ್ಲಿ ಎಳೆದ ಸ್ಪರ್ಶಕವು, ಸ್ಪರ್ಶ ಬಿಂದುವಿನಲ್ಲಿ ಎಳೆದ ತ್ರಿಜ್ಯಕ್ಕೆ ಲಂಬವಾಗಿರುತ್ತದೆ’ ಎಂದು ಸಾಧಿಸಿ.
ಅಥವಾ
ಬಾಹ್ಯ ಬಿಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆ ಎಳೆದ ಸ್ಪರ್ಶಕಗಳು ಸಮ ಎಂದು ಸಾಧಿಸಿ

Question 32.
BC = 6 cm, AB = 5cm ಮತ್ತು ∠ABC = 60° ಇರುವಂತೆ ABC ತ್ರಿಭುಜವನ್ನು ರಚಿಸಿ, ನಂತರ ಮತ್ತೊಂದು ತ್ರಿಭುಜವನ್ನು, ಅದರ ಬಾಹುಗಳು ತ್ರಿಭುಜ ABC ಯ ಅನುರೂಪ ಬಾಹುಗಳ \(\frac { 3 }{ 4 }\) ರಷ್ಟಿರುವಂತೆ ರಚಿಸಿ.

Question 33.
ಮೂರು ವರ್ಷಗಳ ಹಿಂದೆ ರೆಹಮಾನನ ವಯಸ್ಸು (ವರ್ಷಗಳಲ್ಲಿ) ಮತ್ತು 5 ವರ್ಷಗಳ ನಂತರದ ಅವನ ವಯಸ್ಸು ಇವುಗಳ ವೃಶ್ಯಮಗಳ ಮೊತ್ತ \(\frac { 1 }{ 3 }\) ಆದರೆ ಅವನ ಈಗಿನ ವಯಸ್ಸನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಅಥವಾ
ಮೂರು ಕ್ರಮಾನುಗತ ಸಂಖ್ಯೆಗಳಲ್ಲಿ, ಮೊದಲನೆಯ ವರ್ಗ ಮತ್ತು ಉಳಿದೆರಡು ಸಂಖ್ಯೆಗಳ ಗುಣಲಬ್ದಗಳ ಮೊತ್ತ 154 ಆಗಿದೆ. ಹಾಗಾದರೆ ಆ ಮೂರು ಸಂಖ್ಯೆಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

Question 34.
ಈ ಕೆಳಗೆ ವ್ಯಾಖ್ಯಾನಿಸಲ್ಪಟ್ಟ ಹೇಳಿಕೆಗಳ ಕೋನಗಳು ಲಘಕೋನಗಳು. ಈ ಕೆಳಗಿನ ಸಮೀಕರಣಗಳನ್ನು ಸಾಧಿಸಿ.
Karnataka SSLC Maths Model Question Paper 2 Q34
ಅಥವಾ
Karnataka SSLC Maths Model Question Paper 2 Q34.1

Question 35.
ಒಂದು ಕಾರ್ಖಾನೆಯ 50 ಕೆಲಸಗಾರರ ದೈನಂದಿನ ಆದಾಯವನ್ನು ಕೆಳಗಿನ ವಿತರಣೆಯು ನೀಡುತ್ತಿದೆ.
Karnataka SSLC Maths Model Question Paper 2 Q35
ಮೇಲಿನ ವಿತರಣೆಯನ್ನು ಕಡಿಮೆ ಇರುವ ವಿಧಾನದ’ ಸಂಚಿತ ಆವೃತ್ತಿ ವಿತರಣೆಯಾಗಿ ಬದಲಾಯಿಸಿ ಮತ್ತು ಅದರ ಓಜೀವ್ ಎಳೆಯಿರಿ.

Question 36.
ಎರಡನೇ ಬಹುಪದೋಕ್ತಿಯನ್ನು ಮೊದಲನೇ ಬಹುಪದೋಕ್ತಿಯಿಂದ ಭಾಗಿಸಿ ಹಾಗೂ ಮೊದಲನೇ ಬಹುಪದೋಕ್ತಿಯು ಎರಡನೇ ಬಹುಪದೋಕ್ತಿಯ ಅಪವರ್ತನವಾಗಿದೆಯೇ ಎಂದು ಪರೀಕ್ಷಿಸಿ.
t2 – 3 ; 2t4 + 3t3 – 2t2 – 9t – 12
ಅಥವಾ
ಬಹುಪದೋಕ್ತಿ p(x) ನ್ನು ಬಹುಪದೋಕ್ತಿ g(x) ನಿಂದ ಭಾಗಿಸಿ, ಭಾಗಲಬ್ಧ ಮತ್ತು ಶೇಷವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
p(x) = x4 – 3x + 4x + 5
g(x) = x2 + 1 – x

V. ಈ ಕೆಳಗಿನ ಪ್ರಶ್ನೆಗಳಿಗೆ ಉತ್ತರಿಸಿ: (4 × 4 = 16)

Question 37.
ಎರಡು ತ್ರಿಭುಜಗಳಲ್ಲಿ ಒಂದು ತ್ರಿಭುಜದ ಮೂರು ಬಾಹುಗಳು ಮತ್ತೊಂದು ತ್ರಿಭುಜದ ಮೂರು ಬಾಹುಗಳೊಡನೆ ಸಮಾನುಪಾತ ಹೊಂದಿದ್ದರೆ, ಅವುಗಳ ಅನುರೂಪ ಕೋನಗಳು ಸಮವಾಗಿರುತ್ತವೆ ಮತ್ತು ಅದರಿಂದಾಗಿ ಆ ಎರಡು ತ್ರಿಭುಜಗಳು ಸಮರೂಪಿಗಳಾಗಿರುತ್ತವೆ ಎಂದು ಸಾಧಿಸಿ.

Question 38.
ನಕ್ಷೆಯ ಮೂಲಕ ಬಿಡಿಸಿ: y = 2x + 1; x = 2y – 5

Question 39.
(4, -1) ಮತ್ತು (-2, -3) ಬಿಂದುಗಳನ್ನು ಸೇರಿಸುವ ರೇಖಾಖಂಡದ ಭಾಜಕ ಬಿಂದುಗಳ ನಿರ್ದೇಶಾಂಕಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

Question 40.
ಒಂದು ಸಮಾಂತರ ಶ್ರೇಢಿಯ ಮೊದಲ ಪದದ ವರ್ಗವು ಅದರ 8ನೇ ಪದಕ್ಕೆ ಸಮವಾಗಿದೆ ಹಾಗೂ 8ನೇ ಪದವು ನಾಲ್ಕನೇ ಪದಕ್ಕಿಂತ 24 ಹೆಚ್ಚಾಗಿದೆ. ಹಾಗಾದರೆ ಶ್ರೇಢಿಯ ಪದಗಳನ್ನು ಬರೆಯಿರಿ.

Solutions

I.
Solution 1.
(B) 2.4 cm

Solution 2.
(C) \(\frac { { \pi r }^{ 2 } }{ 6 }\)

Solution 3.
(B) -1

Solution 4.
(A) 5

Solution 5.
(A) 2

Solution 6.
(C) x2 – 3x + 2 = 0

Solution 7.
(B) {TT, HH, HT, TH}

Solution 8.
(C) 2πrh

II.
Solution 9.
ತ್ರಿವಳಿ: 5, 4, 3
ಏಣಿಯ ಪಾದದಿಂದ ಗೋಡೆಯ
ಪಾದಕ್ಕಿರುವ ದೂರ = 3 ಮೀ.

Solution 10.
ಒಂದು ಬಿಂದುವಿನಿಂದ ವೃತ್ತದ ಮೇಲಿನ ಬಿಂದುವಿಗೆ ಎಳೆದ ಸ್ಪರ್ಶಕಗಳ ಸಂಖ್ಯೆ = 1

Solution 11.
(x1, y1) ಮತ್ತು (x2, y2) ಬಿಂದುಗಳಿಗೆ ಸಂಬಂಧಿಸಿದಂತೆ : ಭಾಗ ಪ್ರಮಾಣ ಸೂತ್ರ (m1 : m2 ಅನುಪಾತದಲ್ಲಿ)
Karnataka SSLC Maths Model Question Paper 2 S11

Solution 12.
ಭಾಜ್ಯ = ಭಾಜಕ × ಭಾಗಲಬ್ದ + ಶೇಷ
a = b × q + r

Solution 13.
ಗರಿಷ್ಟ ಶೂನ್ಯತೆಗಳು = 3

Solution 14.
x + y = 27
13 + 14 = 27
xy = 182
13 × 14 = 182
ಮೊದಲ ಸಂಖ್ಯೆ = 13, ಎರಡನೆಯ ಸಂಖ್ಯೆ = 14

Solution 15.
a1 = 38, a16 = 73, a31 = ?
a16 = a + 15d
73 = 38 + 15d
73 = 38 + 15d
d = 3
a31 = a1 + 30d = 38 + 30(3) = 38 + 90 = 128
a31 =128

Solution 16.
Karnataka SSLC Maths Model Question Paper 2 S16
AB ಯು ಏಣಿ, CA ಯು ಗೋಡೆ ಮತ್ತು ಕಿಟಕಿಯಾಗಿರಲಿ.
BC = 2.5m ಮತ್ತು CA = 6m
AB2 = BC2 + CA2 = (2.5)2 + (6)2 = 42.25
AB = 6.5
ಏಣಿಯ ಉದ್ದ ಆಗಿದೆ.

Solution 17.
ಮೊದಲ 3 ದಿನದ ಒಂದು ಶುಲ್ಕ = x
ಪ್ರತೀ ದಿನದ ಹೆಚ್ಚುವರಿ ಶುಲ್ಕ = y
x + 4y = 27
x + 2y = 21
2y = 6
y = 3
x + 2y = 21
x + 2(3) = 21
x = 21 – 6
x = 15
ಮೂರು ದಿನಗಳ ಶುಲ್ಕ = x = ₹ 15
ಹೆಚ್ಚುವರಿ ಪ್ರತೀ ದಿನದ ಶುಲ್ಕ = y = ₹ 13

Solution 18.
Karnataka SSLC Maths Model Question Paper 2 S18

Solution 19.
Karnataka SSLC Maths Model Question Paper 2 S19

Solution 20.
Karnataka SSLC Maths Model Question Paper 2 S20

Solution 21.
Karnataka SSLC Maths Model Question Paper 2 S21

Solution 22.
√5 ಒಂದು ಭಾಗಲಬ್ಧ ಸಂಖ್ಯೆಯಾಗಿರಲಿ.
√5 = \(\frac { p }{ q }\) p, q ∈ I
p ಮತ್ತು q ಗಳು 1 ನ್ನು ಹೊರತುಪಡಿಸಿ ಬೇರೆ ಸಾಮಾನ್ಯ ಅಪವರ್ತನ ಹೊಂದಿದ್ದರೆ, ಸಾಮಾನ್ಯ ಅಪವರ್ತನದಿಂದ ಭಾಗಿಸಬಹುದು, ಆದ್ದರಿಂದ p ಮತ್ತು Q ಗಳು ಸಹ ಅವಿಭಾಜ್ಯಗಳೆಂದು ಭಾವಿಸೋಣ
p = q√5
p2 = 5q2 (ಎರಡು ಕಡೆ ವರ್ಗ ಮಾಡಿದಾಗ)
5, p2 ನ್ನು ಭಾಗಿಸುತ್ತದೆ…… (1)
5, p ಮತ್ತು q ಗಳ ಸಾಮಾನ್ಯ ಅಪವರ್ತನವಾಗಿದೆ.
ಏಕೆಂದರೆ, 5, q ನ್ನೂ ಸಹ ಭಾಗಿಸುತ್ತದೆ.
ಅಂದರೆ p = 5r
5q2 = 52r2
q = 5r2 ………(2)
p ಮತ್ತು q ಗಳು ಸಹ ಅವಿಭಾಜ್ಯಗಳು ಎಂಬ ಸತ್ಯಸಂಗತಿಗೆ ವಿರುದ್ಧವಾಗಿದೆ.
√5 ಒಂದು ಅವಿಭಾಜ್ಯ ಸಂಖ್ಯೆಯಾಗಿದೆ.

Solution 23.
ಶೂನ್ಯಗಳ ಮೊತ್ತ = α + β = 1
ಶೂನ್ಯಗಳ ಗುಣಲಬ್ದ = αβ = 1
ವರ್ಗಬಹುಪದೋಕ್ತಿ: x2 – (α + β) x + (αβ)
ಯಲ್ಲಿ ಆದೇಶಿಸಿದರೆ x2 – 1x + 1
(1, 1) ನ್ನು ಕ್ರಮವಾಗಿ ಶೂನ್ಯತೆಗಳ ಮೊತ್ತ ಹಾಗೂ ಗುಣಲಬ್ದವಾಗಿ ಹೊಂದಿರುವ ಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

Solution 24.
2x2 – 3x + 5 = 0
ax2 + bx + c = 0,
a = 2, b = -3, c = 5
ಶೋಧಕ: b2 – 4ac = 9 – 4(2)(5) = 9 – 40 = -31 < 0
ಮೂಲಗಳು ಸಂಮಿಶ್ರ ಸಂಖ್ಯೆಗಳಾಗಿವೆ.

Solution 25.
Karnataka SSLC Maths Model Question Paper 2 S25
Karnataka SSLC Maths Model Question Paper 2 S25.1

Solution 26.
ಆವೃತ್ತಿ ವಿತರಣಾ ಪಟ್ಟಿ
Karnataka SSLC Maths Model Question Paper 2 S26
ಬೌಲರ್ ಗರಿಷ್ಠ ಪಂದ್ಯಗಳಾದ 3 ರಲ್ಲಿ ಪಡೆದ ವಿಕೆಟ್‌ಗಳ ಸಂಖ್ಯೆ 2 ಆಗಿದೆ. ಆದ್ದರಿಂದ ದತ್ತಾಂಶಗಳ ಬಹುಲಕ 2,

Solution 27.
ಫಲಿತಗಣ S = {1, 2, 3, 4, 5, 6}
n(S) = 6
2 & 6 ರ ನಡುವಿನ ಸಂಖ್ಯೆಗಳು A = {3, 4, 5}
n(A) = 3
2 & 6 ರ ನಡುವಿನ ಸಂಖ್ಯೆ ಪಡೆಯುವ ಸಂಭವನೀಯತೆ
P(A) = \(\frac { n(A) }{ n(S) }\) = \(\frac { 3 }{ 6 }\) = \(\frac { 1 }{ 2 }\)

Solution 28.
Karnataka SSLC Maths Model Question Paper 2 S28

Solution 29.
Karnataka SSLC Maths Model Question Paper 2 S29
Karnataka SSLC Maths Model Question Paper 2 S29.1

Solution 30.
Karnataka SSLC Maths Model Question Paper 2 S30

IV.
Solution 31.
Karnataka SSLC Maths Model Question Paper 2 S31
ವೃತ್ತದ ಯಾವುದೇ ಬಿಂದುವಿನಲ್ಲಿ ಎಳೆದ ಸ್ಪರ್ಶಕವು, ಸ್ಪರ್ಶ ಬಿಂದುವಿನಲ್ಲಿ ಎಳೆದ ತ್ರಿಜ್ಯಕ್ಕೆ ಲಂಬವಾಗಿರುತ್ತದೆ’
ದತ್ತ: O ಕೇಂದ್ರವುಳ್ಳ ವೃತ್ತಕ್ಕೆ OP ತ್ರಿಜ್ಯ ಮತ್ತು XY ಸ್ಪರ್ಶಕ ಎಳೆದಿದೆ.
ಸಾಧನೀಯ: OP ಯು XY ಗೆ ಲಂಬವಾಗಿದೆ.
ರಚನೆ: P ಯನ್ನು ಹೊರತುಪಡಿಸಿ XY ಮೇಲೆ ಮತೋಂದು ಬಿಂದು Q ಗುರುತಿಸಿ, OQ ಸೇರಿಸಿ.
ಸಾಧನೆ: Q ಬಿಂದುವು ವೃತ್ತದ ಹೊರಭಾಗದಲ್ಲಿರಬೇಕು.
Q ಬಿಂದುವು ವೃತ್ತದ ಒಳಭಾಗದಲ್ಲಿದ್ದರೆ, XY ವೃತ್ತಕ್ಕೆ ಛೇದಕವಾಗುತ್ತದೆಯೇ ಹೊರತು ವೃತ್ತಕ್ಕೆ ಸ್ಪರ್ಶಕವಾಗುವುದಿಲ್ಲ. ಆದ್ದರಿಂದ OQ ಇದು ವೃತ್ತದ ತ್ರಿಜ್ಯ OP ಗಿಂತ ಉದ್ದವಾಗಿದೆ. ಅಂದರೆ OQ > OP.
P ಬಿಂದುವನ್ನು ಹೊರತುಪಡಿಸಿ, XY ಮೇಲಿನ ಎಲ್ಲಾ ಬಿಂದುಗಳಿಗೂ ಇದು ಅನ್ವಯಿಸುವುದರಿಂದ, O ಬಿಂದುವಿನಿಂದ XYನ ಮೇಲಿನ ಇತರೆ ಬಿಂದುಗಳಿಗಿರುವ ದೂರಕ್ಕಿಂತ OP ಯು ಕನಿಷ್ಟ ಉದ್ದ ಹೊಂದಿದೆ
OP ಯು XY ಗೆ ಲಂಬವಾಗಿದೆ.
ಅಥವಾ
Karnataka SSLC Maths Model Question Paper 2 S31.1
ಬಾಹ್ಯಬಿಂದುವಿನಿಂದ ವೃತ್ತಕ್ಕೆ ಎಳೆದ ಸ್ಪರ್ಶಕಗಳ ಉದ್ದವು ಸಮ.
ದತ್ತ: 0ವೃತ್ತಕೇಂದ್ರ, P ಬಾಹ್ಯಬಿಂದು, PQ & PR ಗಳು ಬಾಹ್ಯಬಿಂದು Pನಿಂದ ಎಳೆದ ಸ್ಪರ್ಶಕಗಳು
ಸಾಧನೀಯ: PQ = PR
ರಚನೆ: OP, OR, OP ಸೇರಿಸಿ
ಸಾಧನೆ: ΔOQP ಮತ್ತು ΔORP ಗಳಲ್ಲಿ
OQ = OR (ತ್ರಿಜ್ಯಗಳು)
∠OQP = ∠ORP = 90°
OP = OP (ಉಭಯಸಾಮಾನ್ಯ)
ΔOQP = ΔORP
PQ = PR

Solution 32.
Karnataka SSLC Maths Model Question Paper 2 S32

Solution 33.
ರೆಹಮಾನನ ಈಗಿನ ವಯಸ್ಸು = x ಆಗಿರಲಿ
3 ವರ್ಷಗಳ ಹಿಂದೆ, ಅವನ ವಯಸ್ಸು = x – 3
5 ವರ್ಷಗಳ ನಂತರ ಅವನ ವಯಸು = x + 5
Karnataka SSLC Maths Model Question Paper 2 S33

Solution 34.
Karnataka SSLC Maths Model Question Paper 2 S34
Karnataka SSLC Maths Model Question Paper 2 S34.1

Solution 35.
Karnataka SSLC Maths Model Question Paper 2 S35

Solution 36.
Karnataka SSLC Maths Model Question Paper 2 S36

Solution 37.
Karnataka SSLC Maths Model Question Paper 2 S37

Solution 38.
Karnataka SSLC Maths Model Question Paper 2 S38
Karnataka SSLC Maths Model Question Paper 2 S38.1

Solution 39.
Karnataka SSLC Maths Model Question Paper 2 S39
Karnataka SSLC Maths Model Question Paper 2 S39.1

Solution 40.
Karnataka SSLC Maths Model Question Paper 2 S40

Karnataka SSLC Maths Model Question Papers

a