# 2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.1

Students can Download Basic Maths Exercise 14.1 Questions and Answers, Notes Pdf, 2nd PUC Basic Maths Question Bank with Answers helps you to revise the complete Karnataka State Board Syllabus and score more marks in your examinations.

## Karnataka 2nd PUC Basic Maths Question Bank Chapter 14 Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.1

Part – A

2nd PUC Basic Maths Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.1 Two Marks Questions and Answers

Question 1.
Obtain the values of the trigonometric functions of 75°, 15° and 105° and prove that
(i) tan 75° + cot 75° = 4
(ii) sin 105° + cos 105° = $$\frac{1}{\sqrt{2}}$$
(iii) Sec 15° + cosec 15° = $$2 \sqrt{6}$$
Answer:
sin(45° + 30°) = sin45°. cos30° + cos45° · sin 30° = $$\frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{2}$$
∴ sin 75° = $$\frac{\sqrt{3}+1}{2 \sqrt{2}}$$
sin15° = sin(45° – 30°) = $$\frac{\sqrt{3}-1}{2 \sqrt{2}}$$
sin(105°) = sin(60° + 45°) = sin60°. sin45° + cos60°.cos45°
= $$\frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}+\frac{1}{2} \frac{1}{\sqrt{2}}$$ ; sin 105° = $$\frac{\sqrt{3}+1}{2 \sqrt{2}}$$
cos(75°) = cos(45° + 30°) = cos 45° – cos30° + sin45° . sin30° = $$\frac{\sqrt{3}+1}{2 \sqrt{2}}$$
cos105° = cos(60° + 45°) = cos60°. cos45° – sin60° . sin45° = $$\frac{+1-\sqrt{3}}{2 \sqrt{2}}$$

a

Question 2.
If sin A = $$\frac { 3 }{ 5 }$$, cos B = $$\frac { 4 }{ 5 }$$ find sin(A + B) and cos(A – B). Where A and B are acute angles.
Answer:
Given sin A = $$\frac { 3 }{ 5 }$$ , cos B = $$\frac { 4 }{ 5 }$$
⇒ cos A = $$\frac { 4 }{ 5 }$$ & sin B = $$\frac { 3 }{ 5 }$$ ∵ sin2A + cos2A = 1
(i) sin(A + B) = sinA cosB + cosA sinB = $$\frac{3}{5} \cdot \frac{4}{5}+\frac{4}{5} \cdot \frac{3}{5}=\frac{24}{25}$$
(ii) cos(A – B) = COSA COSB + sinA sinB = $$\frac{4}{5} \cdot \frac{4}{5}+\frac{3}{5} \frac{3}{5}=\frac{16}{25}+\frac{9}{25}=\frac{25}{25}=1$$

Question 3.
If cos A = $$\frac { 5 }{ 13 }$$, cos B = $$\frac { 24 }{ 25 }$$ find cos(A + B) and sin (A – B). A and B are acute angles.
Answer:
Given
cos A = $$\frac { 5 }{ 13 }$$ cosB = $$\frac { 24 }{ 25 }$$

cos (A + B) = cosA cosB – sinA sinB = $$\frac{5}{13} \cdot \frac{24}{25}-\frac{12}{13} \cdot \frac{7}{25}=\frac{120-84}{325}=\frac{36}{325}$$
sin(A – B) = sinA . cosB – cosA sinB = $$\frac{12}{13} \cdot \frac{24}{25}-\frac{5}{13} \cdot \frac{7}{25}=\frac{288-35}{325}=\frac{253}{325}$$

Question 4.
If sec A = $$\frac { 17 }{ 8 }$$ , cosec B = $$\frac { 5 }{ 4 }$$ find set (A + B). cosec(A + B), A and B are acute angles
Answer:
Given sec = $$\frac { 17 }{ 8 }$$ ⇒ cos A = $$\frac { 8 }{ 17 }$$ ∴ sin A = $$\frac { 15 }{ 17 }$$ cosec B = $$\frac { 5 }{ 4 }$$, sinB = $$\frac { 4 }{ 5 }$$, cosB = $$\frac { 3 }{ 5 }$$

sin(A – B) = sinA cosB – cosA sinB
$$=\frac{15}{17} \cdot \frac{3}{5}-\frac{8}{17} \cdot \frac{4}{5}=\frac{45}{85}-\frac{32}{85}=\frac{13}{85}$$ ; cosec (A – B) = $$\frac { 85 }{ 13 }$$

Question 5.
If sin A = $$\frac { 3 }{ 5 }$$ cos B = $$\frac { -8 }{ 17 }$$ < A < π and $$\frac{\pi}{2}$$ < B < π. Find the values of sin(A + B) and cos(A – B).
Answer:
Given sin A = $$\frac { 3 }{ 5 }$$ . cos A = $$\frac { -4 }{ 5 }$$
cos B = $$\frac { -8 }{ 17 }$$, sin B = $$\frac { 15 }{ 17 }$$
sin(A + B) = sinA cosB + Cos A sinB = $$\frac{3}{5}\left(\frac{-8}{17}\right)+\left(\frac{-4}{5}\right) \frac{15}{17}=\frac{-24-60}{85}=\frac{-84}{85}$$

Question 6.
If sin A = $$\frac { 7 }{ 25 }$$, cos B = $$\frac { -12 }{ 13 }$$ where $$\frac{\pi}{2}$$ < A < π and π < B <  $$\frac{3 \pi}{2}$$ find the values of:
(i) sin(A + B)
(ii) cos(A + B)
(iii) sin(A – B)
(ii) cos(A – B)
(v) tan(A + B)
(vi) tan(A – B)
Answer:

Question 7.
If tan A = $$\frac { 1 }{ 2 }$$, tan B = $$\frac { 1 }{ 3 }$$ Find tan(A + B), tan(A – B)
Answer:

Question 8.
tan(A – B) = $$\frac { 1 }{ 7 }$$, tan A = $$\frac { 1 }{ 2 }$$ show that A + B = 45°.
Answer:

Question 9.
If tan A = $$\frac { 1 }{ 3 }$$ tan (A + B) = $$\frac { 1 }{ 7 }$$ find tan B.
Answer:

Question 10.
tan A = $$\frac { 3 }{ 4 }$$ and tan B = $$\frac { 1 }{ 7 }$$ . show that tan (A + B) = 1.
Answer:
Given tan A = $$\frac { 3 }{ 4 }$$, tanB = $$\frac { 1 }{ 7 }$$

Question 11.
If tan A = $$\frac { 5 }{ 6 }$$ and tan(A + B) = 1 Show that tanB = $$\frac { 1 }{ 11 }$$
Answer:
Given

Question 12.
If tan α = $$\frac{\mathrm{n}}{\mathrm{n}+1}$$ and tan β = $$\frac{1}{2 n+1}$$ Show that α + β = $$\frac{\pi}{4}$$
Answer:

Question 13.
Prove that $$\frac{\cos 2 A}{\sec A}+\frac{\sin 2 A}{\csc A}=\cos A$$
Answer:
L.H.S. = cos2A . $$\frac{1}{\sec A}$$ + sin 2A . $$\frac{1}{\csc A}$$
= cos2A . cosA + sin2A . sinA
= cos(2A – A) = cosA = R.H.S.

Question 14.
Prove that sin(45° + A) + cos(45° + A) = $$\sqrt{2}$$ cosA ,
Answer:
L.H.S. = sin(45° + A) + cos(45° + A)

Question 15.
Prove that cos $$\left(A+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$$ (cos A – sin A).
Answer:

Question 16.
Prove that cos $$\left(\frac{\pi}{6}+\mathbf{A}\right)$$ . cos $$\left(\frac{\pi}{6}-\mathbf{A}\right)$$ – sin$$\left(\frac{\pi}{6}+\mathbf{A}\right)$$ . sin $$\left(\frac{\pi}{6}+\mathbf{A}\right)$$ = $$\frac { 1 }{ 2 }$$.
Answer:

Part – B

2nd PUC Basic Maths Compound Angles, Multiple Angles, Submultiple Angles & Transformation Formulae Ex 14.1 Five Marks Questions and Answers

Question 1.
Prove the following $$\frac{\sin (A+B)}{\cos A \cdot \cos B}$$ =tan A + tanB.
Answer:

Question 2.
$$\frac{\sin (A-B)}{\sin A \sin B}=\cot B-\cot A$$
Answer:

Question 3.
Show that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A.
Answer:
L.H.S = cos(A + B).cos(A – B)
= (cos A . cosB – sin A sinB) (cos A cosB + sinA sinB)
= cos2A . cos2B – sin2A · sin 2B = cos2A(1 – sin2B) – (1 – cos2A) · sin2B

Similarly cos2A . cos2B – sin2A · sin2B = (1 – sin2A) cos2B – sin2A(1 – cos2B)

Question 4.
sin(A + B) sin(A – B) = cos2B – Cos2A
Answer:
L.H.S = sin(A + B) sin(A – B) = (sinA cosB + cosA sinB) (sin A cosB – CosA sinB)
= sin2A cos2B – cos2A sin2B = (1 – Cos2A) cos2B – cos2A (1 – cos2B)

Question 5.
$$\cos \left(\frac{\pi}{4}-A\right)-\sin \left(\frac{\pi}{4}+A\right)=0$$
Answer:

Question 6.
$$\sin \left(\frac{\pi}{3}-A\right) \cdot \cos \left(\frac{\pi}{6}+A\right)+\cos \left(\frac{\pi}{3}-A\right) \cdot \sin \left(\frac{\pi}{6}+A\right)=1$$
Answer:

Question 7.
tan 15° + cot 15° = 4.
Answer:

Question 8.
sin 105° + cos 105° = cos 45°
Answer:
L.H.S = sin105° + cos(105°) = sin(60° + 45°) + cos(60° + 459)

Question 9.
cot 2A + tan A = cosec 2A.
Answer:
L.H.S. = cot2A + tanA

Question 10.
P.T tan A tan 3A, tan 4A = tan 4A – tan3A – tanA.
Answer:
Consider tan4A = tan(3A + A)
$$\frac{\tan 4 A}{1}=\frac{\tan 3 A+\tan A}{1-\tan 3 A \cdot \tan A}$$ ; tan4A(1 – tan3A · tanA) = tan3A + tanA
tan4A – tan4A tan3A tanA = tan3A + tanA
tan4A – tan3A – tanA = tan4A · tan3A tanA

Question 11.
Prove that cos(45° – A) · cos(45° – B) – sin(45° – A) sin(45° – B) = sin(A + B).
Answer:
L.H.S = cos(45° – A) · cos(45° – B) – sin(45° – A) · sin(45° – B)
= cos(45° – A + 45° – B) ∵ cosA . cosB – sinA . sinB
= cos(90° – (A + B)) = cos (A + B) = sin(A + B) = R.H.S.

Question 12.
Show that $$\sum \frac{\sin (A-B)}{\cos A \cdot \cos B}=0$$
Answer:

Question 13.
cos(120° + A) + cos(120° – A) = -cos A
Answer:
L.H.S = cos(120° + A) + cos(120° – A)

Question 14.
$$\frac{\sin (A+B)}{\sin (A-B)} \quad \frac{\tan A+\tan B}{\tan A-\tan B}$$
Answer:

a